

Intrusive Geotechnical Investigation Report

Proposed Upgrades to Kingswood Public School 46-54 Second Avenue, Kingswood

Report No 20429/11-AA Updated

Lemko Place, Penrith NSW 2750 PO Box 880, Penrith NSW 2751 Telephone (02) 4722 2700 E-mail: info@geotech.com.au www.geotech.com.au

An 🚜 eiaustralia company

COVER PAGE

Document Prepared by

Geotechnique Pty Ltd 1 Lemko Place, Penrith NSW 2750 PO Box 880, Penrith NSW 2751 Email: Geotech@geotech.com.au Tel: +61 2 4722 2700 www.geotech.com.au

Document Information

Document Title	Intrusive Geotechnical Investigation Report		
Site Address	46-54 Second Avenue, Kingswood		
Job No	20429/11		
Report No	20429/11-AA Updated		
Client	NSW Department of Education		
Client Address	GPO Box 33, Sydney NSW 2001		

Document Control

Rev	Date	Revision Detail/Status	Author	Reviewer	Approver
0	28/01/2025	Initial Issue	Indra Jworchan		Indra Jworchan
1	28/02/2025	Updated	Indra Jworchan		Indra Jworchan

Author Signature	Gurenha-	
Name	Indra Jworchan	
Title	Principal Engineer	

This document is produced by Geotechnique Pty Ltd solely for the benefit and use by the client in accordance with the terms of the engagement. Geotechnique Pty Ltd does not and shall not assume any responsibility or liability whatsoever to any third party arising out of any use or reliance by any third party on the content of this document.

An 🚜 eiaustralia company

IDIN 04 002 041 003

Job No: 20429/11 Our Ref: 20429/11-AA Updated 28 February 2025

NSW Department of Education GPO Box 33 SYDNEY NSW 2001

Dear Sir/Madam

re: Upgrades to Kingswood Public School (ID 2312) 46-54 Second Avenue, Kingswood Intrusive Geotechnical Investigation (IGI) Report

Please find herewith report on an Intrusive Geotechnical Investigation carried out for the proposed upgrades to Kingswood Public School at 46-54 Second Avenue, Kingswood. This report has been prepared to support a Review of Environmental Factors (REF) for the proposed activity.

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECHNIQUE PTY LTD

mha

INDRA JWORCHAN Principal Geotechnical Engineer BEng MEng MIEAust CPEng NER APEC Engineer IntPE(Aus) Email: indra@geotech.com.au

EXECUTIVE SUMMARY

NSW Department of Education is proposing upgrades to Kingswood Public School. The proposed activity for upgrades includes construction of a single storey building, learning common areas, multi-purpose spaces, covered walkways and removal of ten portable classrooms. This Intrusive Geotechnical Investigation (IGI) report has been prepared to support a Review of Environmental Factors (REF) for the proposed activity and indicates the following:

- The subsurface profile across Kingswood PS comprises a sequence of topsoil/fill and residual soils underlain by bedrock shale. The thickness of fill is variable. Although bedrock was not encountered in all boreholes, the depth to bedrock is anticipated to vary from about 3.0m to 4.5m from existing ground surface.
- The depth to groundwater across the site is likely to be in excess of 4.0m from existing ground surface under normal climatic conditions. It should however be noted that fluctuations in the level of groundwater might occur due to variations in rainfall and/or other factors not evident during drilling.
- A Geotechnical Model constituting two Geotechnical Units is suggested for the proposed upgrade works in Kingswood Public School. Unit 1 is residual soil and Unit 2 is bedrock.
- Residual soils across the site are reactive. However, these soils may be selectively used in controlled fill after removal of deleterious materials (such as topsoil, organic matter, very high plasticity clay, silt etc) and moisture conditioning.
- The soils likely to be disturbed or excavated during the proposed upgrade works are likely to be saline, especially at depths exceeding 1.0m. Therefore, earthworks for proposed upgrade will have to be carried out in accordance with a Saline Soil Management Plan presented in Attachment C.
- Site preparation for proposed upgrade works is likely to involve excavation and fill operations. Excavations can be achieved using conventional earthmoving equipment such as excavators and dozers and fill should be placed in controlled manner. It is unlikely that the excavation works will encounter significant groundwater inflow. Minor groundwater inflow or seepage, if encountered, can be handled with conventional sump and pump method.
- Cut and fill slopes during and after proposed upgrade works should be battered for stability or retained with engineered retaining structures. For excavations within residual soils and controlled fill, recommended batter slopes for short term (temporary) stability is 1.0 vertical to 1.0 horizontal and that for long term (permanent) stability is 1.0 vertical to 2.5 horizontal.
- If batter slopes steeper than those recommended above are required, the batter slopes should be retained with engineered retaining structures. Appropriate retaining structures for the proposed development are anticipated to include gravity walls or cantilever walls or gravity walls designed for earth pressure parameters provided in this report.
- At the completion of earthworks, the building platforms for future buildings are anticipated to vary from controlled fill to residual soils.
- Appropriate footings for the proposed buildings and retaining structures comprise shallow (pad or strip) footings founded on controlled fill or residual soils, or deep footings socketed into bedrock. Deep footings (bored piers, screw piles etc) may be preferable if footings are required to withstand significant lateral and uplift loads. It is anticipated that the allowable bearing pressures for shallow footings founded in controlled fill and residual soils will vary from 100kPa to 200kPa. The allowable bearing pressure for deep footings socketed into bedrock is 700kPa or more.

- The sites for the proposed upgrade works are assessed to have a "Very Low Risk" of slope instability to the property at existing conditions. It is also our assessment that the risk of slope instability across the site can be maintained at "Very Low" so that the sites will be suitable for proposed upgrade works from slope stability considerations provided earthworks and construction of proposed structures are carried out in accordance with recommendations provided in this report.
- Although reactive and saline soils may impose some constraints on proposed upgrade works, the limitations are minor and can be addressed if earthworks are carried out in accordance with the Soil Management Plan provided in this report.

Based on above discussion, it is our assessment that the potential geotechnical risks at the site for the proposed activities are minor and can be addressed if earthworks and design of proposed structures are carried out in accordance with recommendation provided in this report. Furthermore, it is our assessment that the potential impact from the proposed activities on the locality, community and/or the environment is insignificant.

In conclusion, the site is assessed to be suitable for proposed activity provided earthworks and designs of ground floor slabs and footings of proposed school buildings/structures are carried out in accordance with recommendations provided in this report.

GEOTECHNIQUE PTY LTD

TABLE OF CONTENTS

			Page
	-		
EXEC	UTIVE SI	JMMARY	iv
ACRO	NYMS AN	ND ABBREVIATIONS	· vii
1.0	INTROD	UCTION AND DECLARATION	1
2.0	PROPOS	ED ACTIVITIES	1
3.0	SITE DE	SCRIPTION	1
4.0		ROUND INFORMATION	
4.		onal Geology and Soil Landscape	
4.		minary Geotechnical Desktop Study	
4.	3 Intru	usive Geotechnical Investigation	3
	4.3.1	Field Works	3
	4.3.2	Subsurface Profile	4
	4.3.3	Laboratory Tests	4
	4.3.4	Recommended Geotechnical Model for the Site	5
	4.3.5	Soil Salinity	5
	4.3.6	Exposure Classification	
	4.3.7	Aggressivity Classification	7
	4.3.8	Soil Reactivity	7
	4.3.9	Excavation Conditions	
	4.3.10	Excavation Conditions	
	4.3.11	Batter Slopes and Retaining Structures	
	4.3.12	Site Classification	
	4.3.13	Floor Slabs	
	4.3.14	Footings	
	4.3.15	Slope Stability Assessment	
5.0	POTENT	IAL GEOTECHNICAL RISKS	
6.0	MITIGA	TION MEASURES FOR GEOTECHNICAL RISKS	13
7.0		CANCE OF ENVIRONMENTAL IMPACTS	
8.0		JSIONS	
		REFERENCES	
9.0	LISTOF		·1/

ATTACHMENTS

Attachment A:	Drawing No 20429/7-AA1 Plan Showing Borehole Locations Borehole Logs
Attachment B:	Laboratory Test Results
Attachment C	Saline Soil Management Plan

ACRONYMS AND ABBREVIATIONS

Acronym / Abbreviation	Description			
ASS	Acid Sulphate Soil			
COLA	Covered Outdoor Learning Area			
CSM	Conceptual Site Model			
DoE	Department of Education			
EC	Electrical Conductivity			
ECe	Equivalent Electrical Conductivity			
EFSG	Educational Facilities Standards and Guidelines			
ESP	Exchangeable Sodium Percentage			
GLS	General Learning Spaces			
IGI	Intrusive Geotechnical Investigation			
PGDR	Preliminary Geotechnical Desktop Report			
PS	Public School			
REF	Reference Environmental Factors			
SMP	Soil Management Plan			
SSMP	Saline Soil Management Plan			
SINSW	School Infrastructures NSW			
SPT	Standard Penetration Test			
SWMS	Safe Work Method Statement			

vii

1.0 INTRODUCTION AND DECLARATION

This Intrusive Geotechnical Investigation (IGI) report has been prepared to accompany a Review of Environmental Factors (REF) for the Department of Education (DoE) for upgrades to Kingswood Public School (the activity) under Part 5 of the Environmental Planning and Assessment Act 1979 (EP&A Act) and State Environmental Planning Policy (Transport and Infrastructure) 2021 (SEPP TI).

This document has been prepared in accordance with the Guidelines for Division 5.1 assessments (the Guidelines) by the Department of Planning, Housing and Infrastructure.

This report examines and takes into accounts the relevant environmental factors in the Guidelines and Environmental Planning and Assessment Regulations 2021 under Section 170, Section 171 and Section 171A of the EP&A Regulation.

2.0 PROPOSED ACTIVITIES

The proposed activity for upgrades to Kingswood Public School includes:

- One (1) new single storey classroom building comprising eight (8) general learning spaces (GLS), two (2) learning commons areas, two (2) multi-purpose spaces and a verandah along the eastern side of the building;
- The construction of a covered walkway that will provide a connection between the proposed classroom building and an existing covered outdoor learning area (COLA) to the northeast of the proposed building; and
- Removal of existing portable classroom buildings containing ten (10) classrooms.

This report supports REF and provides (1) assessment of subsurface conditions across the site; and (2) geotechnical recommendations on site preparation and the design of the proposed upgrade activity. The IGI was completed in accordance with Australian Standard AS1726 (Reference 1).

3.0 SITE DESCRIPTION

The project site is located at 46-54 Second Avenue, Kingswood, and is legally described as Lot 172 in Deposited Plan (DP) 839785. Kingswood Public School is located on the southern side of Second Avenue.

Most of existing school infra-structures, such as buildings and car parks, are located in the northern portion of the site. The open areas in the remaining portions are grass covered with scattered mature trees.

Ground surface across the site is dipping toward the northwest direction at about 1 to 2 degrees. The ground surface elevation varies from about 42.0m AHD in the northwest corner to about RL58.0m in the southeastern corner. Figure 2 shows surface elevation contours across the site.

Figure 1 on the following page shows the location of the site.

Figure 1 – Location of Kingswood Public School

4.0 BACKGROUND INFORMATION

4.1 Regional Geology and Soil Landscape

Based on the Geological Map of Penrith (Reference 2), bedrock at the site is anticipated to be Bringelly Shale, belonging to the Wianamatta Group of rocks and comprising shale, carbonaceous claystone, laminite, fine to medium grained lithic sandstone, and rare coal.

The Soil Landscape Map of Penrith (Reference 3) indicates that the landscape at the site belongs to the Luddenham Group, which is characterised by undulating to rolling low hills on Wianamatta Group shale, often associated with Minchinbury Sandstone, with local relief of 50m to 80m, ground surface slopes of 5% to 20%, narrow ridges, hillcrests and valleys. Soil in this group is likely to be up to 1.5m deep, highly plastic, moderately reactive, locally impermeable and susceptible to high erosion hazards.

4.2 Preliminary Geotechnical Desktop Study

Review of PGDR (Reference 4) indicates the following:

- The sub-surface profile across the site comprises a sequence of topsoil/fill and residual soil underlain by bedrock. Topsoil/fill comprises low plasticity silty clay and residual soil comprises high plasticity silty clay. Depth to bedrock across the site is anticipated to be about 4.0m from the existing ground surface.
- The depth to groundwater levels is likely to be more than about 4.0m from existing ground surface.
- The Kingswood PS site has moderate salinity potential (Reference 5). Therefore, earthworks (disturbance or excavation of soils) for proposed development works should be carried out in accordance with a Saline Soil Management Plan to manage impact from saline soils to proposed upgrade works and vice versa.

3

20429/11-AA Updated 46-54 Second Avenue, Kingswood

- There are no known or probabilities of occurrences of acid sulphate soils across Kingswood PS and the risk of acid sulphate occurrence is "Low" (Reference 6). Therefore, earthworks for proposed development works can be carried out without an approved Acid Sulphate Soil Management Plan.
- Potential presence of erodible and reactive soils should be considered in design of proposed upgrade works. However, no area of high geotechnical risks was confirmed.
- A Geotechnical Model is Geotechnical Units is suggested for the proposed development (upgrade works) in Kingswood Public School.

From geotechnical engineering considerations, there are no significant geotechnical risks on proposed upgrade works in Kingswood PS. Therefore, it is our assessment that the site is suitable for proposed upgrade works provided site preparation and designs of activity are carried out in accordance with recommendations in this report.

4.3 Intrusive Geotechnical Investigation

4.3.1 Field Works

Field works for IGI were carried out on 27 September 2023 and consisted of the following:

- Reviewing geological and soil landscape maps and PGDR relevant to the site to obtain general idea on geotechnical conditions across the site.
- Reviewing services plans obtained from "Before You Dig Australia" to locate existing services across the site.
- Carrying out a walkover survey to assess existing site conditions and nominate five borehole locations uniformly distributed in accessible portions within the footprint of proposed building or immediate vicinity.
- Scanning proposed borehole locations with aim of avoiding damages to existing underground services during field works for IGI.
- Drilling five (5) boreholes (BH1 to BH5) using an auger mounted on an excavator. These boreholes were terminated at auger refusal in bedrock or depth of about 4.0m from existing ground surface, whichever occurs first. Approximate borehole locations are indicated on Drawing No 20429/7-AA1 presented in Attachment A. Borehole logs are also presented in Attachment A.
- Conducting Dynamic Cone Penetrometer (DCP) tests adjacent to boreholes to assess strength of subsurface soils. DCP tests were terminated at depths of about 0.8m to 1.8m. DCP test results are included in appropriate borehole logs.
- Measuring depths to groundwater level or seepage in boreholes where encountered.
- Collecting representative soil samples from boreholes for visual assessment and laboratory testing.
- Backfilling the boreholes with recovered materials after logging and sampling.

Field works were supervised by a Field Engineer from this company, responsible for walk over survey, nominating borehole locations, conducting DCP tests, sampling, and preparation of field logs.

4.3.2 Subsurface Profile

Sub-surface profiles encountered in boreholes are detailed in the borehole logs presented in Appendix A and summarised below in Table 1.

Borehole No	Ground Surface RL (m AHD)	Termination Depth (m)	Depth for Topsoil/ Fill (m)	Depth for Residual Soil (m)	Depth to Bedrock (m)
BH1	48.6	4.0	0.0-1.0	1.0->4.0	-
BH2	48.4	4.0	0.0-0.8	0.8->4.0	-
BH3	47.5	4.0	0.0-0.2	0.2-3.8	3.8
BH4	47.0	4.0	0.0-0.8	0.8->4.0	_
BH5	47.6	3.6	0.0-0.3	0.3-3.3	3.3

Table 1 - Sub-surface Profiles encountered in Boreholes

Table 1 indicates that the subsurface profiles across the footprint of the proposed new building comprises a sequence of topsoil/fill and residual soils underlain by bedrock. The thickness of fill is variable. Although bedrock was not encountered in all boreholes, the depth to bedrock is anticipated to vary from about 3.0m to 4.5m from existing ground surface. The subsurface materials may in general be described as follows:

- **Topsoil/Fill** Silty CLAY, Gravelly CLAY, low to medium plasticity, brown, moist, with some gravel and roots
- **Residual Soil** Silty CLAY, medium to high plasticity, red mottle pale grey, moisture content generally lower than plastic limit, stiff to very stiff

Shaley CLAY, low to medium plasticity, grey, brown, moisture content generally lower than plastic limit, hard

Bedrock SHALE, extremely to distinctly weathered, very low to low strength

Groundwater level was not encountered in all boreholes up to their termination depths of 3.6m to 4.0m from existing ground surface. Therefore, we anticipate the depth to regional groundwater across the site to be more than 4.0m. However, it should be noted that the groundwater levels might vary due to rainfall and other factors not evident during field work.

4.3.3 Laboratory Tests

Representative soil samples recovered from boreholes were tested in the NATA accredited laboratories in accordance with relevant Australian Standards, to determine the Atterberg limits and chemical properties including Electrical Conductivity (EC), pH, chloride and resistivity. Detailed laboratory test results are presented in Appendix B and summaries of test results are presented in the following Tables 2 and 3.

Borehole	Sample	Liquid	Plastic	Plasticity	Linear Shrinkage
No	Depth (m)	Limit (%)	Limit (%)	Index (%)	(%)
BH5	0.3-0.6	55.0	20.0	35.0	12.5

Table 2 - Results of Shrink Swell Index Tests

Borehole No	Sample Depth (m)	EC (μS/cm)	рН	Chloride (ppm)	Resistivity (ohm-m)
BH2	0.3-0.5	160	6.2	77	220
BH2	0.8-1.0	240	4.8	310	280
BH4	0.8-1.0	690	4.4	990	320
BH4	3.0-3.2	620	4.8	870	290
BH5	0.6-0.8	320	4.8	410	250
BH5	3.3-3.5	690	4.7	910	320

Table 3 - Results of Chemical Properties Tests

4.3.4 Recommended Geotechnical Model for the Site

Based on borehole information detailed above, a Geotechnical Model constituting two Geotechnical Units and detailed below in Table 4 is suggested for the proposed upgrade works in Kingswood PS. Each Geotechnical Unit represents a specific nature of soil and/or bedrock encountered across the site.

Geotechnical Unit	Material Description	Indicative Depth to Top of Unit (m)
Unit 1	Residual Soils/Controlled Fill	0.0
Unit 2	Bedrock - Shale	3.0-4.5

Table 4 - Recommended Geotechnical Model

It is noted that the residual soils are overlain generally by 0.3m to 1.0m thick topsoil/fill. Topsoil was minor. We anticipate the topsoil and existing fill within footprints of proposed structures will be removed or replaced with controlled fill placed in accordance with recommendations provided below in this report or additional tests will be carried out to confirm existing fill is controlled fill. Controlled fill may be considered to belong to Unit 1. Indicative strength parameters, in terms of cohesion and internal friction angle, as well as modulus for each Geotechnical Unit are presented below in Table 5.

Geotechnical Units	Unit Weight (kN/m³)	Cohesion (kPa)	Friction Angle (deg)	Young's Modulus (MPa)	Poisson's Ratio
Unit 1	19.0	5.0	27.0	25.0	0.30
Unit 2	21.0	300.0	30.0	100.0	0.25

Table 5 - Effective Strength Parameters and Modulus

4.3.5 Soil Salinity

Soil salinity is generally assessed by measuring Electrical Conductivity (EC) of a soil sample made up of 1:5 soil water suspension. Thus, determined EC is multiplied by a factor varying from 6 to 23, based on the texture of the soil sample, to obtain Corrected Electrical Conductivity designated as ECe (Reference 8). Alternatively, ECe may be directly measured in soil saturation extracts.

Soils are classified as saline if ECe of the saturated extracts exceed 4.0dS/m. The criteria for assessment of soil salinity classes are shown in the following Table 6 (Reference 7).

6

		-
Classification	EC _e (dS/m)	Comments
Non-saline	<2	Salinity effects mostly negligible
Slightly saline	2 – 4	Yields of very sensitive crops may be affected
Moderately saline	4 – 8	Yields of many crops affected
Very saline	8 – 16	Only tolerant crops yield satisfactorily
Highly saline	>16	Only a few tolerant crops yield satisfactorily

Table 6 – Criteria for Soil Salinity Classification

Electrical conductivity (EC) values for representative soil samples are summarised in Table 3. For clayey soils encountered across the site an appropriate multiplying factor is assumed to vary from 9 to 10. Therefore, ECe values for representative soil samples are estimated to vary from 1.6dS/m to 6.9dS/m. Generally, soils from depths exceeding 1.0m are assessed to be saline. However, soil likely to be disturbed or excavated during proposed development works should be considered to be saline. Therefore, earthworks for the proposed development works should be carried out in accordance with the Saline Soils Management Plan presented in Attachment C.

4.3.6 Exposure Classification

Australian Standard AS2870 (Reference 8) provides guidelines to assess soil aggressivity and Exposure Classification for saline and acid/sulphate soils. Table 7 below provides salinity and Exposure Classifications based on EC_e, and Table 8 provides Exposure Classification based on acidic and sulphate soils.

Electrical Conductivity, EC _e (dS/m)	Exposure Classification	Salinity Classification									
<2	A1	Non-saline									
2 – 4	A1	Slightly saline									
4 – 8	A2	Moderately saline									
8 – 16	B1	Very saline									
>16	B2	Highly saline									

 Table 7 – Exposure Classifications for Saline Soils

Sulphate	expressed as SO₃	- 5 4	Exposure Classification*		
In Soil (ppm)	In Groundwater (ppm)	рН	Soil Condition A	Soil Condition B	
<5000	<1000	>5.5	A2	A1	
5000-10000	1000-3000	4.5-5.5	B1	A2	
10000-20000	3000-10000	4.0-4.5	B2	B1	
>20000	>10000	<4.0	C2	B2	

*Soil Condition A = high permeability soils (e.g. sands and gravels) which are below groundwater *Soil Condition B = low permeability soils (e.g. silts and clays) and all soils above groundwater

As stated above, soils across the school are clayey and therefore appropriate "Soil Condition" for predominant clayey soils is assessed to be "Condition B". Therefore, based on laboratory test results presented in Tables 3 and guidelines on Exposure Classifications presented in Tables 7 and 8, the Exposure Classifications for proposed building site is assessed to be Classes A1 to A2. Therefore, we recommend that the proposed upgrade works use construction materials (such as concrete, bricks) and construction methods appropriate for Exposure Class A2.

4.3.7 Aggressivity Classification

Australian Standard AS2159 (Reference 9) provides Aggressivity Classifications of soil and groundwater applicable to iron/steel and concrete piles that may be used for proposed upgrade works. The Aggressivity Classifications applicable to iron/steel piles is provided below in Table 9 and Aggressivity Classification applicable to concrete piles is provided in Table 10.

Ch	loride	mLl	Resistivity	Soil Condition	Soil Condition	
In Soil (ppm)	In Water (ppm)	pH (ohm cm)		A*	B#	
<5000	<1000	>5.0	>5000	Non-aggressive	Non-aggressive	
5000-20000	1000-10000	4.0-5.0	2000-5000	Mild	Non-aggressive	
20000-50000	10000-20000	3.0-4.0	1000-2000	Moderate	Mild	
>50000	>50000 >20000		<1000	Severe	Moderate	

 Table 9 – Aggressivity Classification for Steel

Sulphate	expressed as SO ₄	5 4	Chloride in	Soil Condition	Soil Condition							
In Soil (ppm)	In Groundwater (ppm)	рН	Water (ppm)	Α	В							
<5000	<1000	>5.5	<6000	Mild	Non-aggressive							
5000-10000	1000-3000	4.5-5.5	6000-12000	Moderate	Mild							
10000-20000	3000-1000	4.0-4.5	12000-30000	Severe	Moderate							
>20000	>10000	<4.0	>30000	Very Severe	Severe							

 Table 10 – Aggressivity Classification for Concrete

As discussed above soils across the site are clayey and therefore Soil Condition B is appropriate. Based on laboratory test results presented in Table 3 and guidelines on Aggressivity Classifications presented in Tables 9 and 10, the proposed building site is assessed to be Non-aggressivity to Moderately Aggressive to steel piles and Non-aggressive to Mildly Aggressive to concrete piles. Resistivity is dominant for steel piles and pH is dominant for concrete piles. Therefore, we recommend that the steel and concrete piles supporting proposed structures are designed to suit Moderately Aggressive and Mildly Aggressive sites respectively (Reference 9).

4.3.8 Soil Reactivity

Liquid limit and plastic limit of a representative residual soil sample are estimated to be 55.0% and 20.0% respectively and linear shrinkage is 12.5%. Therefore, it is our assessment that soils across the site are reactive and therefore susceptible to shrink and swell movements.

4.3.9 Excavation Conditions

Proposed upgrade works across the school is anticipated to involve some cut (including removal of uncontrolled fill and unsuitable foundation materials) and fill operations. Although details on depth of excavations are not provided, we anticipate proposed excavations will not be deeper than about 1.5m from existing ground surface. Therefore, the materials to be excavated are anticipated to comprise topsoil, fill and residual soils. Bedrock excavation is not anticipated.

Therefore, it is our assessment that the excavations for the proposed upgrade works can be achieved using conventional earthmoving equipment such as excavators and dozers.

Based on site observation during field work, we do not anticipate significant groundwater inflow during excavations to depths of about 1.5m. Minor groundwater inflow, if any, could be managed by a conventional sump and pump method. However, trafficability problems could arise locally during wet weather or if water is allowed to pond at the site.

Ground vibration during excavation works is generally represented by maximum peak particle velocity. It is anticipated that the existing structures/buildings in the vicinity of the site can tolerate ground vibration of about 5.0mm/s to 10.0mm/s. We also anticipate that the proposed excavations will result in ground vibrations that are likely to be within tolerable limits for stability of existing structures in the vicinity of the site.

4.3.10 Fill Placement

Site preparation for proposed upgrade works may involve placement of replacement of existing fill and placement of additional fill. The fill should be placed in a controlled manner, and we recommend the following procedures for placement of controlled fill.

- Strip existing topsoil and stockpile separately for possible future uses or dispose off the site. Topsoil may be used in landscaping.
- Undertake field density tests or Dynamic Cone Penetrometer (DCP) tests in existing fill, where
 exposed, to ascertain existing fill is compacted adequately to be suitable as foundation materials. If
 existing fill is conformed to be uncontrolled fill, strip existing fill to expose residual soils and stockpile
 separately for possible future uses or dispose off the site. Fill materials may selectively be used in
 controlled fill.
- Undertake proof rolling (using an 8 to 10 tonnes roller) of the exposed controlled fill and/or residual soils to detect potentially weak spots (ground heave). Excavate areas of localised heaving to a depth of about 300mm and replace with granular fill/crushed sandstone, compacted as described below.
- Undertake proof rolling of soft spots backfilled with granular fill, as described above. If the backfilled area shows movement during proof rolling, this office should be contacted for further recommendations.
- Place suitable fill materials on proof rolled surface. Fill should be placed in horizontal layers of 200mm to 250mm maximum loose thickness and compacted to a Minimum Dry Density Ratio (MDDR) of 98% Standard, at moisture content within 2% of Optimum Moisture Content (OMC). Controlled fill should preferably comprise non-reactive fill (e.g. crushed sandstone), with a maximum particle size not exceeding 75mm, or low plasticity clay. The residual soils and bedrock obtained from excavations within the site may also be selectively used in controlled fill, after crushing to sizes finer than 75mm, moisture conditioning, and removal of unsuitable materials.

8

9

 Fill placement should be supervised to ensure that material quality, layer thickness, testing frequency and compaction criteria conform to the specifications. We recommend "Level 2" or better supervision, in accordance with AS3798 (Reference 11). It should be noted that a Geotechnical Inspection and Testing Authority will generally only provide certification on quality of entire compacted fill if Level 1 supervision and testing is carried out.

4.3.11 Batter Slopes and Retaining Structures

As described above, site preparation for the proposed upgrade works will involve cut and fill operations. Cuts are likely to be limited in residual soils. The cut and fill slopes should be battered for stability or retained by engineered retaining structures. If cut and fill slopes are to be battered for stability, we recommend the following batter slopes:

- For short-term stability in controlled fill and residual soils = 1 vertical to 1 horizontal
- For long-term stability in controlled fill and residual soils = 1 vertical to 2.5 horizontal

It is also recommended that batter slopes are provided with adequate surface and sub-surface drainage, and the crest of the batter slope is at least 1.0m away from the property boundaries.

However, if cut and fill slopes steeper than those recommended above are required for whatever reason, these slopes should be retained by engineered retaining structures. Appropriate retaining structures for the proposed upgrade works are anticipated to comprise cantilever walls and gravity walls. The pressure distribution on such walls is assumed to be triangular in shape and estimated as follows:

 $p_h = \gamma kH$

Where,

p_h = Horizontal pressure (kN/m²)

- γ = Total unit weights of retained materials (kN/m³)
- k = Coefficient of earth pressure (k_a or k_o)
- H = Retained height (m)

For design of flexible retaining structures where some lateral movement is acceptable, an active earth pressure coefficient (k_a) is recommended. However, if it is critical to limit the horizontal deformation, use of an earth pressure coefficient at rest (k_0) is recommended. Recommended earth pressure coefficients for the design of retaining structures are presented below:

- Total Unit Weigh = 19.0kN/m³
- Coefficient of active earth pressure = 0.35
- Coefficient of at rest earth pressure = 0.55
- Coefficient of passive pressure (k_p) = 2.75

The above coefficients are based on the assumptions that the ground level behind the retaining structure is horizontal, and the retained material is effectively drained. Additional earth pressures resulting from surcharge load (buildings, infrastructures, etc) on retained materials and groundwater pressure, if any should also be allowed for in design of retaining structures. The design of any retaining structure should also be checked for bearing capacity, overturning, sliding and overall stability of the slope.

4.3.12 Site Classification

Australian Standard AS2870 (Reference 8) suggests that a building site is classified based on thickness of clayey foundation soils and reactivity (shrink swell movements) of foundation soils. Site preparation for the proposed upgrade works is anticipated to involve some cut and fill operations. Therefore, the thickness of clayey foundation soils as well as thickness and nature of controlled fill within proposed building footprint at the completion of earthworks are not known at this stage. However, reactivity of fill materials is anticipated to be better or at least as good as residual soils across the site.

Table 2 indicates that the residual soils are reactive. Therefore, it is our assessment that the residual soils across the site and fill, comprising residual soils and crushed shale obtained from excavation within the site, is likely to be reactive.

Based on assessed shrink swell value and thickness of foundation soil, it is our assessment that the building site for proposed upgrade works in Kingswood PS will belong to Class H1 in accordance with Australian Standard AS2870 (Reference 8). However, suggested site classification should be confirmed by sampling and testing of foundation soils after construction of building platform is completed.

Recommended site classification is based on the following assumptions:

- 1. Topsoil and fill are removed or replaced with controlled fill.
- 2. The construction requirements, site maintenance and performance expectations set out in Australian Standard AS2870 (Reference 8) are acceptable.

4.3.13 Floor Slabs

We anticipate foundation materials at ground floor levels of proposed building for proposed upgrade works will include controlled fill or residual soils. Under such circumstances, ground floor slabs for the proposed building may be designed and constructed as ground bearing slabs, or suspended slabs supported by footings designed in accordance with recommendations provided in this report.

Ground bearing floor slabs may be designed to suit Site Class H1 in accordance with Australian Standard AS2870 (Reference 8). Alternatively, we recommend a Modulus of Subgrade Reaction value of 20kPa/mm for design of ground-bearing slabs on controlled fill and residual soils.

4.3.14 Footings

Loading conditions for the proposed buildings/structures are not known at this stage. However, we consider that appropriate footings would comprise shallow footings (pad and strip footings) founded on controlled fill, residual soils or deep footings (bored piers or screw piles) founded on bedrock. Deep footings would be preferable if footings are required to support high vertical loads as well as significant lateral and uplift pressures. The recommended allowable bearing pressures for design of shallow and deep footings are presented in the following Table 12.

Founding Material	Founding Depth from Existing Ground Surface (m)	Ultimate Bearing Pressure (kPa)	Ultimate Shaft Adhesion (kPa)	Allowable Bearing Pressure (kPa)	Allowable Shaft Adhesion (kPa)
Unit 1 Controlled Fill/Residual Soil	0.5-1.5	300.0	Ignore	100.0	Ignore
Unit 1 Residual Soil	1.5-2.0	500.0	30.0	200.0	5.0
Unit 2 Bedrock	3.0-4.5	2000.0	150.0	700.0	70.0

Table 11 – Recommended Bearing Pressures

The following should be noted:

- The ultimate bearing pressure and shaft adhesion are based on the ultimate capacities mobilised at large displacements, about 5.0% to 10.0% of pile diameter or minimum footing width. These values assume a clean rock socket with a roughness Category of R2 or better (Reference 12).
- The allowable bearing pressure and shaft adhesion are based on the capacities mobilised at displacements of about 1.0% of pile diameter or minimum footing width.
- The ultimate and allowable bearing pressures for Unit 2 are based on the assumptions that the piers are socketed at last 0.3m into appropriate rock units.
- Differential settlements are estimated to be about halves the estimated total settlements.
- The shaft adhesions against uplift pressures are halves the shaft adhesions for compressive loads presented in above table.
- For limit state design, geotechnical strength reduction factor ϕ_g of 0.50 is recommended in accordance with AS2159 (Reference 9). However, reduction factor ϕ_g can be increased up to 0.7 to 0.8 if pile design is verified by analyses of pile load tests and sufficient construction monitoring is carried out.

It is preferable that the footings are founded on similar foundation. As depths of bedrock with the recommended allowable bearing pressures is anticipated to vary across the site, the founding depths of footings to be constructed will also vary. Therefore, an experienced Geotechnical Engineer should confirm bearing pressures at founding levels during construction, on the basis of assessment made during footing excavation or pier hole drilling.

4.3.15 Slope Stability Assessment

Site factors such as slope angles, depth of insitu soils, strengths of sub-surface materials, and concentrations of water generally govern the stability of a site. "Practice Note Guidelines for Landslide Risk Management", prepared by Australian Geomechanics Society (Reference 13), recommends that the landslide (slope failure) risk at a site is assessed on the basis of the likelihood of a landslide (slope failure) event and the consequences of that event.

Applying the above guidelines, the risk of landslide (slope failure) across the site at its existing conditions is assessed as follows:

• Qualitative Measures of Likelihood - For the existing site conditions, it is our assessment that an event of a landslide (slope failure) is "Rare", which means slope failures are conceivable but under exceptional circumstances, with indicative annual probability of ≈10⁻⁵.

• Qualitative Measures of Consequences to Property - It is our assessment that the consequences of landslide (slope failure) in the site to the property would be "Minor", resulting in limited damage to part of structures, and/or part of the site requiring some reinstatement/stabilisation works.

Based on the above Qualitative Measures, the site for the proposed upgrades is assessed to have a "Very Low Risk" to the property. The definitions of the risk levels are provided in Reference 13 and an abstract is presented below.

Risk	Level	Implication					
VH	Very High Risk	Extensive detailed investigation and research, planning and implementation of treatment options, essential to reduce risk to acceptable levels; may be too expensive and not practical.					
Н	High Risk	Detailed investigation, planning and implementation of treatment options required to reduce risk to acceptable levels.					
М	Moderate Risk	Tolerable, provided treatment plan is implemented to maintain or reduce risks. May be accepted. Might require investigation and planning of treatment options.					
L	Low Risk	Usually accepted. Treatment requirements and responsibility to be defined to maintain or reduce risk.					
VL	Very Low Risk	Acceptable. Manage by normal slope maintenance procedures.					

Based on a "Very Low " risk to property, it is considered that the site is assessed to be suitable for proposed upgrade works providing site preparation works and construction of proposed buildings/structures do not increase the risk of slope instability. Therefore, risk of slope instability does not impose any limitation of proposed upgrade works.

5.0 POTENTIAL GEOTECHNICAL RISKS

Based on anticipated site conditions, the potential geotechnical constraints or risks on proposed upgrade works include the following:

- The risk of variability in the thickness of fill and depth to bedrock.
- The risk of occurrence of saline soils.
- The risk of presence of reactive soils

Boreholes distributed across the site encountered fill. The thickness of fill across the site varies from about 0.2m to 1.0m from the existing ground surface. Likewise, the depth to bedrock across the site varies from about 3.5m to 4.0m. It will be preferably that footings of proposed buildings are founded on similar foundation materials. Therefore, designer of building should consider impacts of these variabilities on design and costing of the buildings.

Laboratory tests indicate that the soils across the site are reactive and saline. Therefore, designer of the upgrade works should consider and manage impacts from reactive and saline soils.

6.0 MITIGATION MEASURES FOR GEOTECHNICAL RISKS

The potential geotechnical constraints or risk on proposed upgrades to Kingswood PS include variability in the depth to bedrock and presence of reactive and salinity soils.

The geotechnical risks associated with variabilities in thickness and nature of fill and depth to bedrock can be addressed by conducting additional investigation or inspection during construction stage. However, structural design can be based on currently available information which can be confirmed during construction stage.

The risk associated with reactive soils can be addressed if the ground floor slabs and pavement are designed to suit the reactivity of the site and ground maintenance is carried out in accordance with Australian Standard AS2970 (Reference 8).

Likewise, impacts from saline soil can be addressed if earthworks are carried out in accordance with a Saline Soil Management Plan (SSMP) presented in Attachment C.

Table 13 in the following page presents recommended mitigation measures to address these geotechnical risks so that the residual risks are "Low" and the site is suitable for the proposed upgrade works.

7.0 SIGNIFICANCE OF ENVIRONMENTAL IMPACTS

Based on nature of potential geotechnical risks at the site, it is our assessment that the potential impacts of proposed activities can be appropriately mitigated or managed in accordance with the recommended mitigation measures presented in Table 13. Once recommended remedial measures are implemented, the residual geotechnical risk at the site will be "Low". Therefore, from geotechnical engineering consideration, it is determined that the extent and nature of potential impacts from the proposed activities are "Low" and will not have significant impact on the locality, community and/or the environment.

Mitigation Number/Names	When Mitigation Measures are to be Complied With	Mitigation Measures	Reason for Mitigation Measure
Geotechnical Risk - Variability in Depth to Bedrock	Design & Construction Stage Relevant Sections in the Report 4.3.2, 4.3.4 & 4.3.14	Design of footings/piers can be based on the geotechnical recommendation provided in this report. But site inspection should be carried out during construction stage to ascertain the depth to bedrock and allowable bearing pressures for design of footings. The designer should recognise variability in thickness of soils, including fill, and the depth to bedrock and ascertain that the designs of activities are appropriate to site conditions. It is preferable that the footings of proposed structures are founded on bedrock. However, its impact on project costing should be considered.	To reduce the risk or uncertainties due to variation in thickness of soils and depth to bedrock so that actual founding depths for footings or piers supporting buildings and other major structures are known. This means appropriate, economical and reliable foundation design can be achieved and potential variation claims during construction stage can be minimised.
Geotechnical Risk- Reactive Soil	Design, Construction & Operation Relevant Sections in the Report 4.3.2, 4.3.8, 4.3.12 & 4.3.14	Design of floor slabs and pavement can be based on Class H1 site in accordance with geotechnical recommendations provided in this report. The designer should recognise that the shrink swell movements and therefore site classification for a building site depends on thickness and reactivity of soil within the footprint of that building site Therefore, the designer should ascertain site classification for every building footprint by conducting additional testing after construction of building platform.	To reduce the risk or uncertainties due to variation in thickness and reactivity of soils so that appropriate, economical and reliable design of building slabs and pavements can be achieved, and potential variation claims during construction stage can be minimised.

Table 12 – Recommended Mitigation Measures to Manage Geotechnical Risks

The Department of Education IJ/28.02.2025

Mitigation Number/Names	When Mitigation Measures are to be Complied With	Mitigation Measures	Reason for Mitigation Measure
Geotechnical Risk-Saline Soil	Design and Construction Relevant Sections in the Report 4.3.5, & Attachment C	Earthworks, including disturbance and excavation of soils, during proposed activity should be carried out in accordance with the Saline Soil Management Plan (SSMP) presented in Appendix C to manage and minimise impacts from saline soils to the proposed activity and vice versa. The designer should recognise that the subsurface soils across the site are saline and potentially dispersive. The cost for management of saline soil should be considered in project costing. It is possible that non-saline soil may be encountered in some portions of the site. Unless additional testing is carried out to delineate non- saline soil, disturbance, and excavation of localised non-saline soils should also be carried out in accordance with SSMP.	To manage adverse impacts from saline and dispersive soils to the proposed activity and vice versa and to reduce variation claims during construction stage

Based on results of PGDS and IGI, it is our assessment that the 46-54 Second Avenue, Kingswood, is suitable for proposed upgrade to Kingswood PS from geotechnical engineering considerations provided: (1) geotechnical constraints imposed by variability in depth to bedrock and presence of reactive, saline and erodible soils are addressed in accordance with mitigation measures provided in this report; and (2) site preparation and design of floor slabs and footings of proposed buildings and other structures are carried out in accordance with geotechnical recommendations provided in this report. From geotechnical engineering considerations, the extent and nature of potential impacts from the proposed activities are "Low" and will not have significant impact on the locality, community and/or the environment.

If you have any questions, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECHNIQUE PTY LTD

INDRA JWORCHAN Principal Geotechnical Engineer

9.0 LIST OF REFERENCES

- 1. Australian Standard AS1726-2017, Geotechnical Site Investigation 2017.
- Geology of Penrith 1:100,000 Sheet (9030) Geological Survey of New South Wales, Department of Minerals and Energy 1991.
- 3. Soil Landscape of Penrith 1:100,000 Sheet (9030) Soil Conservation Service Survey of NSW 1989.
- 4. Geotechnique Pty Ltd, Preliminary Geotechnical Desktop Study Report, Kingswood Public School, 46-54 Second Avenue, Kingswood, Report No 20429/5-AA, 24 October 2023.
- 5. Department of Infrastructure, Planning and Natural Resources, Salinity Potential in Western Sydney (scale approximately 1:140,000), 2002.
- 6. NSW Department of Land and Water Conservation, Acid Sulphate Soil Risk Map of Liverpool (Edition 2, 1:25,000) 1997.
- 7. Lillicrap, A and McGhie, S., Site Investigation for Urban Salinity, Department of Land and Water Conservation, 2002.
- 8. Australian Standard AS2870-2011, Residential Slabs and Footings, 2011.
- 9. Australian Standard AS2159-2009, Piling Design and Installation, 2009.
- 10. Australian Standard AS3798-2007, Guidelines on Earthworks for Commercial and Residential Developments, 2007.
- 11. Pells, P. J. N, State of Practice for the Design of Socketed Piles in Rocks, Proceeding 8th Australian New Zealand Conference on Geomechnics, Hobart, pp 1-307-327.
- 12. Australian Geomechanics Society Landslide Taskforce, Landslide Practice Note Working Group "Practice Note Guidelines for Landslide Risk Management", March 2007.
- 13. Landcom, Managing Urban Stormwater : Soils and Construction, Vol 1, Parramatta, 2004.
- 14. Landcom, Managing Urban Stormwater : Soils and Construction, Vol 2A Installation of Services, Parramatta, 2008.

PTV LTD

EOTECHNIQUE

ATTACHMENT A

Drawing No 20429/7-AA1 Plan Showing Locations of Boreholes

Borehole Logs

Г

Pr	ient ojec ocati	t :	С	ontra		DDV	NO 05	135/23	I Infrastructure Job No. : 20429/7 Borehole No. : BH1 Date : 27/09/2023 Logged/Checked by: JH				
dril	l mo	del ar	nd m	oun	ing :	5	.5 Ton	ne Excavator	slope :	de	eg.	R.L. sı	Irface: 48.599
hc	ole di	iamet	er :	250		nm		bearing :	deg.	dat	um :		AHD
method groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESC soil type, plasticity or parti colour, secondary and mir	icle characteristic, lor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
metta de la companya de la comp	env	Old	DS	C 5 0 14 15 10 8 6 5 20r	tide prime 1	grap grap grap grap grap	CI-CH CI-CH		hor components. dium plasticity,	M⊴PL M⊴PL M⊴PL	St	hance and a second s	Well compacted
DRY													- - - - - - - - - - - - -
					4 – – 4.5 – –			Borehole BH1 terminated limit of reach	at 4.0m due to				- - - - -

GEOTECHNIQUE PTY LTD

ſ	Ρ	Pro	ent : oject	:			-			ducation - School Infra 135/23		No. : 2 hole N			
	L	.00	catio	on :	Ki	ngsw	vood P	ubli	c Scho	lool	Date: 27/09/2023 Logged/Checked by: JH				
ŀ	drill model and mounting: 5.5 Tonne Excavator										slope : deg. R.L. surface : 48.4				rface: 48.410
	h	ol	e di	amet	er :	250	n	nm		bearing :	deg.	dat	um :		AHD
	meulou arounduotor	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESC soil type, plasticity or part colour, secondary and mir	icle characteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
					DS				CI-CH	FILL: Silty Clay, low to me brown, trace of gravel Silty CLAY, medium to hig Silty CLAY, medium to hig Borehole BH2 terminated limit of reach	h plasticity, brown	M⊴PL	St		Well compacted
							4.5 —	-							

GEOTECHNIQUE PTY LTD

	Location : Kingswood Public School Date												No.: 20429/7 ehole No.: BH3 e: 27/09/2023 ged/Checked by:JH				
drill model and mounting: 5.5 Tonne Excavator										slope :	de	eg.	R.L. sı	Irface : 47.548			
	ho	le di	amet	er :	250	r	nm		bearing :	deg.	dat	um :		AHD			
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCF soil type, plasticity or partic colour, secondary and mine	le characteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations			
Γ					C 4 0 1	5 0 -			TOPSOIL: Silty Clay, low p trace of rootlets	lasticity, brown,				_			
						$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CI-CH	Silty CLAY, medium to high orange	n plasticity,	M≤PL	St		Residual			
				DS		5 1 — 4 — — 3 — — 4 — — 4 — —			Silty CLAY, medium to high	n plasticity, grey	-						
						5 1.5 — 5 — — 6 — — 1 — —											
						2								Trace of ironstone			
						2.5											
						3											
					-	3.5				d'attact.							
	DRY			DS		-			SHALE, grey, extremely to weathered, low strength	aistinctly				Bedrock			
						4.5	-		Borehole BH3 terminated a limit of reach	t 4.0m, due to							

GEOTECHNIQUE PTY LTD

	Pro	ent : oject catio	::	С	ontra		DDV	VO 05	ducation - School Infra 135/23 pol	Bore Date	No.: 2 hole N : 27/ ed/Che	lo.: E	3H4 23	
d	drill model and mounting: 5.5 Tonne Excavator slope:													Irface : 46.965
	ho	le di	amet	er:	250	n	nm		bearing :	deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESC soil type, plasticity or part colour, secondary and min	icle characteristic, nor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
				DS				СІ-СН	FILL: Silty Clay, low to me brown, trace of gravel Silty CLAY, medium to his Shaley CLAY, low to med brown to grey	h plasticity, grey	M≤PL	St-VSt St		Residual
	DRY					3.5			brown to grey					- - - - - - - -
						4 4.5	-		Borehole BH4 terminated limit of reach	at 4.0m due to				

GEOTECHNIQUE PTY LTD

Г

	Pr Lo	ient ojec ocatio	t: on:	C K	ontra ingsw	ct No I vood P	DDV ubli	VO 05 c Scho	135/23 pol	- School Infrastructure Job No. : 20429/7 Borehole No. : BH5 Date : 27/09/2023 Logged/Checked by: JH						
drill model and mounting : 5.5 Tonn hole diameter : 250 mm								.5 Ton	ne Excavator	slope :		eg. um :	R.L. su	I rface : 47.570 AHD		
method	water		PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	bearing : MATERIAL DESCRIP soil type, plasticity or particle colour, secondary and minor of	characteristic,			hand penetrometer kPa	Remarks and additional observations		
	DRY			U ₅₀ DS DS	C 12 O 17 E 16 12 8 6 5 3 3 3 3 3 3 3 3 3 3 3 5 4 4 4 7 14 13 15r			CI-CH	FILL: Gravelly Clay, low plasti Silty CLAY, medium to high pl SHALE, brown to grey, distinc medium strength Borehole BH5 terminated at 3 refusal to bedrock.	asticity, grey	M≤PL	F-St		Residual		

GEOTECHNIQUE PTY LTD

Log Symbols & Appreviations (Non-cored Borenole Log)	Log Symbols & Abbreviations	(Non-cored	Borehole Log)
--	-----------------------------	------------	----------------------

Log Column	Symbol/Value	Description					
Drilling Method	V-bit	Hardened steel 'V' shaped bit attached to auger					
	TC-bit	Tungsten Carbide bit attached to auger					
	RR	Tricone (Rock Roller) bit					
	DB	Drag bit					
Groundwater	BB Dry	Blade bit Groundwater not encountered to the drilled or auger refusal depth					
		Groundwater level at depths shown on log					
Environment Sample	GP	Groundwater seepage at depths shown on log Glass bottle and plastic bag sample over depths shown on log					
	G	Glass bottle sample over depths shown on log					
	P	Plastic bag sample over depths shown on log					
PID Reading	100	PID reading in ppm					
Geotechnical Sample	DS	Disturbed Small bag sample over depths shown on log					
	DB	Disturbed Bulk sample over depths shown on log					
Field Test	U ₅₀	Undisturbed 50mm tube sample over depths shown on log Standard Penetration Test (SPT) 'N' value. Individual numbers indicate blows per					
	N=10 3,5,5	150mm penetration.					
	N=R	'R' represents refusal to penetration in hard/very dense soils or in cobbles or					
	10,15/100	boulders.					
		The first number represents10 blows for 150mm penetration whereas the second number represents 15 blows for 100mm penetration where SPT met refusal					
	DCP/PSP 5	Dynamic Cone Penetration (DCP) or Perth Sand Penetrometer (PSP). Each					
	6	number represents blows per 100mm penetration. 'R/10' represents refusal after					
	-	10mm penetration in hard/very dense soils or in gravels or boulders.					
	R	10					
Classification	GP	Poorly Graded GRAVEL					
	GW	Well graded GRAVEL					
	GM GC	Silty GRAVEL Clayey GRAVEL					
	SP	Poorly graded SAND					
	SW	Well graded SAND					
	SM	Silty SAND					
	SC	Clayey SAND					
	ML	SILT / Sandy SILT / clayey SILT, low plasticity					
	MI	SILT / Sandy SILT / clayey SILT, medium plasticity					
	MH	SILT / Sandy SILT / clayey SILT, high plasticity					
	CL CI	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, low plasticity CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, medium plasticity					
	CH	CLAY / Silty CLAY / Sandy CLAY / Gravely CLAY, inedian plasticity					
Moisture Condition							
Cohesive soils	M <pl< td=""><td>Moisture content less than Plastic Limit</td></pl<>	Moisture content less than Plastic Limit					
	M=PL	Moisture content equal to Plastic Limit					
	M>PL	Moisture content to be greater than Plastic Limit					
Cohesionless soils	D	Dry - Runs freely through hand					
	М	Moist - Tends to cohere					
2	W	Wet - Tends to cohere					
Consistency Cohesive soils	VS	Term Undrained shear strength, Hand Penetrometer					
Collesive Solis	S	Cu(kPa) (Qu) Very Soft ≤12 <25					
	F	Soft >12 & ≤25 25 - 50					
	St	Firm >25 & ≤50 50 - 100					
	VSt	Stiff >50 & ≤100 100 – 200					
	Н	Very Stiff >100 & ≤200 200 - 400					
		Hard >200 >400					
Density Index	VL	Term Density Index, I _D (%) SPT 'N' (blows/300mm)					
Cohesionless soils	L	Very Loose ≤15 ≤5 Loose >15 & ≤35 >5 & ≤10					
	M	Loose >15 & ≤35 >5 & ≤10 Medium Dense >35 & ≤65 >10 & ≤30					
	D	Dense >65 & ≤85 >30 & ≤50					
	VD	Very Dense >85 >50					
Hand Penetrometer	100	Unconfined compressive strength (q_u) in kPa determined using pocket					
Pomarka	200	penetrometer, at depths shown on log					
Remarks	Residual	Geological origin of soils Residual soils above bedrock					
	Alluvium	River deposited Alluvial soils					
		Gravity deposited Colluvial soils					
	Colluvial	Gravity deposited Colluvial solis					
	Aeolian	Wind deposited Aeolian soils					

GEOTECHNIQUE PTY LTD

AS1726 : 2017– Unified Soil Classification System

Major D	Divisions	Particle size (mm)	Group Symbol	Typical Names	Field Identi	fications Sand a	nd Gravels				Laboratory classifica	tion	
OVERSIZE	BOULDERS	>200							% Fines (2)	Plasticity of Fine Fraction	$C_u = D_{60}/D_{10}$	$C_c = (D_{30})^2 / (D_{10}D_{60})$	Notes
OVERSIZE	COBBLES	63						'su					
		Coarse 19	GW	Well-graded gravels, gravel-sand mixtures, little or no fines		rain size and subs te sizes, not enou o dry strength		or Divisio	≤5	-	>4	between 1 and 3	1. Identify lines by the method given for fine
COARSE GRAINED SOIL (more than 65% of soil excluding oversize fraction is greater than 0.075mm)	GRAVEL (more than half of coarse fraction is		GP	Poorly graded gravels, gravel- sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength			given in 'Major Divisions'	≤5	-	Fails to comply with above		grained soils
	larger than 2.36mm)	Martinez C 7	GM	Silty gravels, gravel-sand-silt mixtures		rials with excess of non-plastic fines, dium dry strength		iteria give	≥12	Below 'A' line or I _p <4	-	-	2. Borderline classifications occur when the
		Medium 6.7	GC	Clayey gravels, gravel-sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	stic fines,	to the criteria	≥12	Above 'A' line or I _p >7	-	-	percentage of fines (fraction smaller than 0.075mm size)
		Fine 2.36 Coarse 0.6	SW	Well-graded sands, gravelly sands, little or no fines		rain size and subs te sizes, not enou o dry strength		according t	≤5	-	>6	between 1 and 3	greater than 5% and less than 12%. Borderline classifications
	SAND (more than half of	Medium 0.21	Poorly graded sands and gravelly sands; little or no fines, uniform sands	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength Outy strength 'Dirty' materials with excess of non-plastic fines, zero to medium dry strength Outy materials with excess of plastic fines, porty' materials with excess of plastic fines, Outy strength				≤5 -		Fails to comply with above		require the use of dual symbols e.g. SP-SM, GW- GC	
	coarse fraction is smaller than 2.36mm)	action is SM Silty sands, sand-silt mixtures			'Dirty' materials with excess of non-plastic fines, zero to medium dry strength			ification o	≥12	Below 'A' line or $I_p < 4$	-	-	
		Fine 0.075	SC	Clayey sand, sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	stic fines,	o.	≥12	Above 'A' line of I _p >7	-	-	
		1 116 0.073	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight	Dry Strength None to low	Dilatancy Slow to	Toughness Low	ng 63mm f		Below 'A'			
	SILT (0.075mm to 0.002mm) & CLAY (<0.002mm)		CL, CI	plasticity Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Medium to high	rapid None to very slow	Medium	gradation of material passing	E E	line Above 'A' line	⁶⁰		a
FINE GRAINED	Liquid Limit<50%		OL	Organic silts and organic silty clays of low plasticity	Low to medium	Slow	Low	tion of ma	More than 35% passing 0.075mm	Below 'A' line	50 -		110 A 110 200
SOIL (more than 35% of soil excluding oversize raction is less than	SILT (0.075mm to 0.002mm) & CLAY (<0.002mm) Liquid Limit>50%		MH	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	Low to medium	None to slow	Low to medium	the	35% pas	Below 'A' line	OK NDEX	CH or OH	
.075mm)			СН	Inorganic clays of medium to high plasticity, fat clays	High to very high	None	High	Use	More than	Above 'A' line		OL MH or 6	н
			OH (1)	Organic clays of medium to high plasticity, organic silts	Medium to high	None to very slow	Low to medium		-	Below 'A' line		ML or OL 30 40 50 60 7/ LIQUID LIMIT W _L , %	0 80 90
	HIGHLY ORGANIC S	SOILS	Pt (1)	Peat and highly organic soils	Identified by colo generally by fibr	our, odour, spong ous texture	feel and		Effervesce	s with H ₂ O ₂			

Log Symbols & Abbreviations (Cored Borehole Log)

Log Column	Symbol / Abbreviation	Description		
Core Size	NQ NMLC	Nominal Core Size (mn 47 52	n)	
Water Loss	HQ —	63 Complete water loss		
	$ \longrightarrow $	Partial water loss		
Weathering (AS1726:2017)	RS	Residual Soil	Material is weathered to such properties. Mass structure and of original rock are no longer v been significantly transported	material texture and fabric
	XW	Extremely Weathered	Material is weathered to such properties. Mass structure and of original rock are still visible	
	HW	Highly Weathered	The whole of the rock material iron staining or bleaching to th the original rock is not recogr significantly changed by wea minerals have weathered to cla be increased by leaching, or deposition of weathering product	e extent that the colour of nizable. Rock strength is athering. Some primary ay minerals. Porosity may may be decreased due to
	MW	Moderately Weathered	The whole of the rock material iron staining or bleaching to th the original rock is not recogniz change of strength from fresh ro	e extent that the colour of able, but shows little or no
	SW	Slightly Weathered	Rock is partially discoloured v along joints but shows little or r fresh rock	
	FR	Fresh	Rock shows no sign of de minerals or colour changes	composition of individual
		Distinctly Weathered (L changed by weatheri	possible to distinguish between I DW) may be used. DW is define ng. The rock may be highly may be increased by leaching, g products in pores'	d as 'Rock strength usually v discoloured, usually by
Strength (AS1726:2017)	VL L M H VH	Very Low Low Medium High Very High	Point Load Strength Index (I₅₅₀, ≥0.03 ≤ 0.1 >0.1 ≤ 0.3 >0.3 ≤ 1 >1 ≤ 3 >3 ≤ 10 >10	MPa)
Defect Spacing	EH	Extremely High Description Extremely closely spaced Very closely spaced Closely spaced Medium spaced Widely spaced Very widely spaced Extremely widely spaced		Spacing (mm) <20 20 to 60 60 to 200 200 to 600 600 to 2000 2000 to 6000 >6000
Defect Description (AS1726:2017)				
Туре	Pt Jo Sh Sz Ss Cs Is Ews	Parting Joint Sheared Surface Sheared Zone Sheared Seam Crushed Seam Infilled Seam Extremely Weathered S	Seam	
Macro-surface geometry	St Cu Un Ir Pl	Stepped Curved Undulating Irregular Planar		
Micro-surface geometry	Vro Ro Sm Po Sl	Very Rough Rough Smooth Polished Slickensided		
Coating or infilling	cn sn vn cg	clean stained veneer coating		

Grain Size mm					Bedded rocks (mostly sedimentary)								
More than 20	20		ain Size scription			At leas	st 50% of	grains are of carl	bonate	At least 50% of grains are of fine-grained volcanic rock			
	6	RUDACEOUS		CONGLOMERATE Rounded boulders, cob cemented in a finer mat Breccia Irregular rock fragments		DLOMITE ed)	Calcirudite		Fragments of volcanic ejecta in a finer matrix Rounded grains AGGLOMERATE Angular grains VOLCANIC BRECCIA	SALINE ROCKS Halite Anhydrite			
	0.6			SANDSTONE Angular or rounded grai cemented by clay, calci Quartzite Quartz grains and silice Arkose Many feldspar grains Greywacke		LIMESTONE and DOLOMITE (undifferentiated)	Calcarenite		Cemented volcanic ash	Gypsum			
	0.06 0.002 Less than	ARGI	LLACEOUS	Many rock chips MUDSTONE SHALE Fissile	SILTSTONE Mostly silt CLAYSTONE Mostly clay	Calcareous Mudstone		Calcisiltite Calcilutite	CHALK	Fine-grained TUFF			
Amorphor crypto-cry					Flint: occurs as hands of nodules in the chalk Chert: occurs as nodules and beds in limestone and calcareous sandstone						COAL LIGNITE		
				Granular cemented – e:	xcept amorphous roo	cks							
	-			SILICEOUS CALCAREOUS					SILICEOUS		CARBONACEOUS		
				Granular cemented rock specimens and is best s	SEDIMENTARY ROCKS Granular cemented rocks vary greatly in strength, some sandstones are stronger than many Igneous rocks. Bedding may not show in hand specimens and is best seen in outcrop. Only sedimentary rocks, and some metamorphic rocks derived from them, contain fossils								
				Calcareous rocks conta	in calcite (calcium c	arbonate)	which eff	ervesces with dil	ute hydro	chloric acid			

AS1726 – Identification of Sedimentary Rocks for Engineering Purposes

AS1726 – Identification of Metamorphic and Igneous Rocks for Engineering Purposes

Obviously fo	liated rocks (mostly metamorphic)		Rocks with	massive structure	and crystalline texture	(mostly igneous)		Grain size (mm)
Grain size description			Grain size description	Pe	egmatite		Pyrosenite	More than 20
	GNEISS	MARBLE				_	Peridorite	20
	Well developed but often widely spaced foliation sometimes with schistose bands	QUARTZITE		GRANITE	Diorite	GABBRO	Peridonte	6
COARSE	schistose banos	Granulite	COARSE		e sometimes are then described, porphyritic granite			6
	Migmatite Irregularly foliated: mixed schists and gneisses	HORNFELS						2
	SCHIST Well developed undulose foliation; generally much mica	Amphibolite		Micorgranite	Microdiorite			0.6
MEDIUM		Serpentine	MEDIUM	These rocks are phorphyritic and as porphyries	e sometimes are then described	Dolerite		0.2
								0.06
	PHYLLITE Slightly undulose foliation; sometimes 'spotted'			RHYOLITE	ANDESITE	DADAL T		0.002
FINE	SLATE Well developed plane cleavage (foliation)		FINE	These rocks are sometimes phorphyritic and are then described as porphyries		BASALT		Less than 0.002
	Mylonite Found in fault zones, mainly in igneous and metamorphic areas			Obsidian	Volcanic glass			Amorphous or cryptocrystallin e
CRYSTALLIN	Ē			Pale<			>Dark	
SILICEOUS		Mainly SILICEOUS		ACID Much quartz	INTERMEDIATE Some quartz	BASIC Little or no quartz	ULTRA BASIC	
impart fissility. foliated metam Any rock bake and is general	IIC ROCKS phic rocks are distinguished by foliation Foliation in gneisses is best observe norphics are difficult to recognize exce d by contact metamorphism is describ ly somewhat stronger than the parent tamorphic rocks are strong although p	d in outcrop. Non- pt by association. ed as 'hornfels' rock		closely interlocking	g mineral grains. Stron ; 2 Laccoliths; 3 Sills; 4			

ATTACHMENT B

Laboratory Test Results

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	TAILS
Contact Client Address	Indra Jworchan Geotechnique P.O. Box 880 NSW 2751	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	indra.jworchan@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	20429/7 Kingswood Public School Second A	SGS Reference	SE254713 R0
Order Number	20429/7	Date Received	29/9/2023
Samples	6	Date Reported	12/10/2023

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Dong LIANG Metals/Inorganics Team Leader

Shane MCDERMOTT Inorganic/Metals Chemist

уэмь, уэмь гивтц

Ying Ying ZHANG Laboratory Technician

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

Conductivity and TDS by Calculation - Soil [AN106] Tested: 12/10/2023

			BH2	BH2	BH4	BH4	BH5
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.3-0.5	0.8-1.0	0.8-1.0	3.0-3.2	0.6-0.8
			27/9/2023			27/9/2023	27/9/2023
PARAMETER	UOM	LOR	SE254713.001	SE254713.002	SE254713.003	SE254713.004	SE254713.005
Conductivity of Extract (1:5 as received)	µS/cm	1	160	240	690	620	320
Salinity (by calculation)*	mg/kg	5	590	910	2600	2300	1200
Resistivity of extract (1:5 as received)*	ohm m	0.1	62	42	14	16	31

			BH5
PARAMETER	UOM	LOR	SOIL 3.3-3.5 27/9/2023 SE254713.006
Conductivity of Extract (1:5 as received)	µS/cm	1	690
Salinity (by calculation)*	mg/kg	5	2500
Resistivity of extract (1:5 as received)*	ohm m	0.1	14

SE254713 R0

Moisture Content [AN002] Tested: 10/10/2023

			BH2	BH2	BH4	BH4	BH5
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.3-0.5	0.8-1.0	0.8-1.0	3.0-3.2	0.6-0.8
			27/9/2023			27/9/2023	27/9/2023
PARAMETER	UOM	LOR	SE254713.001	SE254713.002	SE254713.003	SE254713.004	SE254713.005
% Moisture	%w/w	1	10.7	14.2	13.9	13.1	15.8

			BH5
			SOIL
			3.3-3.5
			27/9/2023
PARAMETER	UOM	LOR	SE254713.006
% Moisture	%w/w	1	11.1

SE254713 R0

pH in soil (1:2) [AN101] Tested: 11/10/2023

PARAMETER	UOM	LOR	27/9/2023 SE254713.001	27/9/2023 SE254713.002	27/9/2023 SE254713.003	27/9/2023 SE254713.004	27/9/2023 SE254713.005
			0.3-0.5	0.8-1.0	0.8-1.0	3.0-3.2	0.6-0.8
			SOIL	SOIL	SOIL	SOIL	SOIL
			BH2	BH2	BH4	BH4	BH5

			BH5
			SOIL
			3.3-3.5
			27/9/2023
PARAMETER	UOM	LOR	SE254713.006
pH (1:2)	pH Units	-	4.7

SE254713 R0

Conductivity (1:2) in soil [AN106] Tested: 11/10/2023

			BH2	BH2	BH4	BH4	BH5
			201	0.01	00"	0.011	
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.3-0.5	0.8-1.0	0.8-1.0	3.0-3.2	0.6-0.8
			27/9/2023			27/9/2023	27/9/2023
PARAMETER	UOM	LOR	SE254713.001	SE254713.002	SE254713.003	SE254713.004	SE254713.005
Conductivity (1:2) @25 C*	µS/cm	1	410	710	1500	1200	730
Resistivity (1:2)*	ohm cm	-	2500	1400	680	800	1400

			BH5
PARAMETER	UOM	LOR	SOIL 3.3-3.5 27/9/2023 SE254713.006
Conductivity (1:2) @25 C*	µS/cm	1	1500
Resistivity (1:2)*	ohm cm	-	680

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography [AN245] Tested: 11/10/2023

			BH2	BH2	BH4	BH4	BH5
			SOIL	SOIL	SOIL	SOIL	SOIL
			0.3-0.5	0.8-1.0	0.8-1.0	3.0-3.2	0.6-0.8
			27/9/2023			27/9/2023	27/9/2023
PARAMETER	UOM	LOR	SE254713.001	SE254713.002	SE254713.003	SE254713.004	SE254713.005
Chloride	mg/kg	0.25	77	310	990	870	410
Sulfate	mg/kg	0.5	220	280	320	290	250

			BH5
			SOIL 3.3-3.5
			27/9/2023
PARAMETER	UOM	LOR	SE254713.006
Chloride	mg/kg	0.25	910
Sulfate	mg/kg	0.5	320

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:2 and the pH determined and reported on the extract after 1 hour extraction (pH 1:2) or after 1 hour extraction and overnight aging (pH (1:2) aged). Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract of as received sample with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Salinity can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. Reference APHA 2510 B.
AN106	Resistivity of the extract is reported on the extract basis and is the reciprocal of conductivity. Salinity and TDS can be calculated from the extract conductivity and is reported back to the soil basis.
AN245	Anions by Ion Chromatography: A water sample or extract is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, CI, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.
***	Indicates that both * and ** apply.

Not analysed.
 NVL Not validated.
 IS Insufficient sample for
 LNR analysis.
 Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

- Note that in terms of units of radioactivity:
 - a. 1 Bq is equivalent to 27 pCi
 - b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact Client Address	Indra Jworchan Geotechnique P.O. Box 880 NSW 2751	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
Facsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	indra.jworchan@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	20429/7 Kingswood Public School Second A	SGS Reference	SE254713 R0
Order Number	20429/7	Date Received	29 Sep 2023
Samples	6	Date Reported	12 Oct 2023

COMMENTS .

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

6 items
6 items

Sample counts by matrix	6 Soil	Type of documentation received	COC	
Date documentation received	5/10/2023@11:48AM	Samples received in good order	Yes	
Samples received without headspace	N/A	Sample temperature upon receipt	24.5°C	
Sample container provider	Client	Turnaround time requested	Standard	
Samples received in correct containers	Yes	Sufficient sample for analysis	Yes	
Sample cooling method	None	Samples clearly labelled	Yes	
Complete documentation received	Yes			

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety Unit 16 33 Maddox St PO Box 6432 Bourke Rd Alexandria NSW 2015 Alexandria NSW 2015 Australia t +61 2 8594 0400

Australia

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the

IE-(AU)-[ENV]AN	Method: M							Conductivity (1:2) in soil
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
11 Oct 2023†	04 Oct 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293102	SE254713.001	BH2
11 Oct 2023†	04 Oct 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293102	SE254713.002	BH2
11 Oct 2023†	04 Oct 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293102	SE254713.003	BH4
11 Oct 2023†	04 Oct 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293102	SE254713.004	BH4
11 Oct 2023†	04 Oct 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293102	SE254713.005	BH5
11 Oct 2023†	04 Oct 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293102	SE254713.006	BH5
IE-(AU)-[ENV]AN	Method: M						alculation - Soil	Conductivity and TDS by C
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
12 Oct 2023†	04 Oct 2023	12 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293281	SE254713.001	BH2
12 Oct 2023†	04 Oct 2023	12 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293281	SE254713.002	BH2
12 Oct 2023†	04 Oct 2023	12 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293281	SE254713.003	BH4
12 Oct 2023†	04 Oct 2023	12 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293281	SE254713.004	BH4
12 Oct 2023†	04 Oct 2023	12 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293281	SE254713.005	BH5
12 Oct 2023†	04 Oct 2023	12 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293281	SE254713.006	BH5
IE-(AU)-[ENV]AI	Method: M							loisture Content
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
12 Oct 2023	15 Oct 2023	10 Oct 2023	11 Oct 2023	29 Sep 2023	27 Sep 2023	LB293015	SE254713.001	3H2
12 Oct 2023	15 Oct 2023	10 Oct 2023	11 Oct 2023	29 Sep 2023	27 Sep 2023	LB293015	SE254713.002	3H2
12 Oct 2023	15 Oct 2023	10 Oct 2023	11 Oct 2023	29 Sep 2023	27 Sep 2023	LB293015	SE254713.003	BH4
12 Oct 2023	15 Oct 2023	10 Oct 2023	11 Oct 2023	29 Sep 2023	27 Sep 2023	LB293015	SE254713.004	3H4
12 Oct 2023	15 Oct 2023	10 Oct 2023	11 Oct 2023	29 Sep 2023	27 Sep 2023	LB293015	SE254713.005	3H5
12 Oct 2023	15 Oct 2023	10 Oct 2023	11 Oct 2023	29 Sep 2023	27 Sep 2023	LB293015	SE254713.006	BH5
IE-(AU)-[ENV]AI	Method: M							H in soil (1:2)
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
11 Oct 2023	12 Oct 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293102	SE254713.001	3H2
11 Oct 2023	12 Oct 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293102	SE254713.002	BH2
11 Oct 2023	12 Oct 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293102	SE254713.003	BH4
11 Oct 2023	12 Oct 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293102	SE254713.004	BH4
11 Oct 2023	12 Oct 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293102	SE254713.005	3H5
11 Oct 2023	12 Oct 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293102	SE254713.006	BH5
IE-(AU)-[ENV]AI	Method: M					omatography	1:2 DI Extract by Ion Chro	oluble Anions in Soil from
Analysed	Analysis Due	Extracted	Extraction Due	Received	Sampled	QC Ref	Sample No.	Sample Name
12 Oct 2023	08 Nov 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293101	SE254713.001	BH2
12 Oct 2023	08 Nov 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293101	SE254713.002	3H2
12 Oct 2023	08 Nov 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293101	SE254713.003	BH4
12 Oct 2023	08 Nov 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293101	SE254713.004	BH4
12 Oct 2023	08 Nov 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293101	SE254713.005	BH5
12 Oct 2023	08 Nov 2023	11 Oct 2023†	04 Oct 2023	29 Sep 2023	27 Sep 2023	LB293101	SE254713.006	BH5

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No surrogates were required for this job.

METHOD BLANKS

SE254713 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity (1:2) in soil			Method: ME-(AU)-[ENV]AN10
Sample Number	Parameter	Units L	-OR Result
LB293102.001	Conductivity (1:2) @25 C*	μS/cm	1 <1

Conductivity and TDS by Calculation - Soil

Conductivity and TDS by Calculation - Soil		Meth	od: ME-(AU)-[ENV]AN106	
Sample Number	Parameter	Units	LOR	Result
LB293281.001	Conductivity of Extract (1:5 as received)	μS/cm	1	<1
	Salinity (by calculation)*	mg/kg	5	<5

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography			Metho	od: ME-(AU)-[ENV]AN245
Sample Number	Parameter	Units	LOR	Result
LB293101.001	Chloride	mg/kg	0.25	<0.25
	Sulfate	mg/kg	0.5	<0.5

DUPLICATES

Method: ME-(AU)-IENVIAN106

Method: ME-(AU)-[ENV]AN101

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

NOTE: The RPD reported is calculated from the unrounded data for the original and replicate result. Manual calculation of the RPD from the rounded data reported may

Conductivity (1:2) in soil

						Mour	ou. mic-(//0/1	[Little barro
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE254713.004	LB293102.014	Conductivity (1:2) @25 C*	µS/cm	1	1200	1300	30	5
		Resistivity (1:2)*	ohm cm	-	800	760	31	5
SE254714.006	LB293102.023	Conductivity (1:2) @25 C*	µS/cm	1	58	59	33	1
		Resistivity (1:2)*	ohm cm	-	17000	17000	30	1
Conductivity and 1	DS by Calculation - Soil					Meth	od: ME-(AU)-	ENVJAN10
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE254714.004	LB293281.014	Conductivity of Extract (1:5 as received)	µS/cm	1	18.3	17.58	41	4
		Salinity (by calculation)*	mg/kg	5	36.583565737	63.963884462	1 45	4
SE254714.006	LB293281.026	Conductivity of Extract (1:5 as received)	µS/cm	1	33.97	34.7	36	2
		Salinity (by calculation)*	mg/kg	5	32.72925092	35.581542750	37	2
Moisture Content						Meth	od: ME-(AU)-	ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE254713.004	LB293015.011	% Moisture	%w/w	1	13.1	12.3	38	6
SE254714.006	LB293015.020	% Moisture	%w/w	1	16.8	20.8	35	21

pH in soil (1:2)

Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE254713.004	LB293102.014	pH (1:2)	pH Units	-	4.8	4.8	32	1
SE254714.006	LB293102.023	pH (1:2)	pH Units	-	4.7	4.7	32	0

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography Method: ME-(A				od: ME-(AU)-	ENVJAN245			
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE254713.004	LB293101.014	Chloride	mg/kg	0.25	870	860	30	1
		Sulfate	mg/kg	0.5	290	290	31	0
SE254714.006	LB293101.023	Chloride	mg/kg	0.25	21	20	31	4
		Sulfate	mg/kg	0.5	22	22	39	1

LABORATORY CONTROL SAMPLES

Method: ME-(AU)-[ENV]AN245

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Conductivity (1:2) in soil Method: ME-(AU)-[ENV]AN1							U)-[ENV]AN106
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB293102.002	Conductivity (1:2) @25 C*	µS/cm	1	310	303	70 - 130	103

Conductivity and TDS by Calculation - Soil

Conductivity and TDS by Calculation	Soil				N	lethod: ME-(A	U)-[ENV]AN106
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB293281.002	Conductivity of Extract (1:5 as received)	µS/cm	1	280	303	85 - 115	94

pH in soil (1:2)

pH in soil (1:2)						Method: ME-(A	U)-[ENV]AN101
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB293102.003	pH (1:2)	pH Units	-	7.4	7.415	98 - 102	99

Soluble Anions in Soil from 1:2 DI Extract by Ion Chromatography

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB293101.002	Chloride	mg/kg	0.25	38	40	70 - 130	96
	Sulfate	mg/kg	0.5	38	40	70 - 130	95

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spikes were required for this job.

Matrix spike duplicates are calculated as Relative Percent Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: https://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- *** Indicates that both * and ** apply.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- 2 RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to relevant report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

SGS EHS Sydney COC SE254713

GEOTECHNIQUE PTY LTD

Laboratory Test Request / Chain of Custody Record

PENR	o Place NTH NSW 275	-		PEN	P O RITH NS	Box 880 W 2751	Fax: (0	2) 4722 2700 2) 4722 6161 info@geotech.com.a	au				Page		1	of	1
TO:	UNIT 16 33 MADD	IRONMENTAL OX STREET DRIA NSW 201						Sampling By:		JH	Job I Proje		20429/7 Proposed S	Schoo	ol Upgrade		
PH:	02 8594 0				FAX:	02 8594	0499	Project Manager:		IJ	Loca	tion:	Kingswoo Second Av				
		Sampling de	etails		Samp	le type				D							
	Location	Depth (m)	Date	Time	Soil	Water				Results	required by:						
							Salinity	Aggressivity Suite									KEEF SAMPI
	BH2	0.3 - 0.5	27/09/2023		DS		✓	1			I			_			YES
	BH2	0.8 - 1.0	27/09/2023		DS		√	1		Aggre	ssivity suit includes	pH. S	O4, cl and Re	esistiv	vity)		YES
	BH4	0.8 - 1.0	27/09/2023		DS		√	1									YES
	BH4	3.0 - 3.2	27/09/2023		DS		1	1									YES
	BH5	0.6 - 0.8	27/09/2023		DS		✓	1									YES
	BH5	3.3 - 3.5	27/09/2023		DS		1	1						+			YES
			Relinquis	hed by				-			Received	by					
	Name			Signature			Date		Name		Sign	ature				Date	
	Ziaudidn Al	nmed	Z	iaudidn Ahn	ned		29/09/2023	6	. F			7		2	9/9/2	3	2:40
Legen WG		nple, glass bottle	e		USG	Undistur	oed soil sample (g	la DSP	Disturbed s	soil sample (s	mall plastic bag)		* Purge & T	rap	@	mole H ⁺ /	tonne
WP	Water san	ple, plastic bott	le		DSG	Disturbe	d soil sample (glas	s √	Test requir	red			# Geotechr	nique	Screen		

SAMPLE RECEIPT ADVICE

Contact	Indra Jworchan	Manager	Huong Crawford
Client	Geotechnique	Laboratory	SGS Alexandria Environmental
Address	P.O. Box 880 NSW 2751	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	02 4722 2700	Telephone	+61 2 8594 0400
acsimile	02 4722 6161	Facsimile	+61 2 8594 0499
Email	indra.jworchan@geotech.com.au	Email	au.environmental.sydney@sgs.com
Project	20429/7 Kingswood Public School Second A	Samples Received	Fri 29/9/2023
Order Number	20429/7	Report Due	Thu 12/10/2023
Samples	6	SGS Reference	SE254713

This is to confirm that 6 samples were received on Friday 29/9/2023. Results are expected to be ready by COB Thursday 12/10/2023. Please quote SGS reference SE254713 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Sample counts by matrix Date documentation received Samples received without headspace Sample container provider Samples received in correct containers Sample cooling method Complete documentation received
- 6 Soil 5/10/2023@11:48AM N/A Client Yes None Yes

Type of documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested Sufficient sample for analysis Samples clearly labelled COC Yes 24.5°C Standard Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

4 Extra samples not included in COC

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

015 Australia 015 Australia

tralia t +61 2 8594 0400 tralia f +61 2 8594 0499

www.sgs.com.au

SAMPLE RECEIPT ADVICE

CLIENT DETAILS

Client Geotechnique

SUMMARY OF ANALYSIS

Project 20429/7 Kingswood Public School Second A

00000						
Nc	o. Sample ID	Conductivity (1:2) in soil	Conductivity and TDS by Calculation - Soil	Moisture Content	pH in soil (1:2)	Soluble Anions in Soil from 1:2 DI Extract by Ion
001	BH2 0.3-0.5	2	3	1	1	2
002	BH2 0.8-1.0	2	3	1	1	2
003	BH4 0.8-1.0	2	3	1	1	2
004	BH4 3.0-3.2	2	3	1	1	2
005	BH5 0.6-0.8	2	3	1	1	2
006	BH5 3.3-3.5	2	3	1	1	2

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

TEST RESULTS - ATTERBERG LIMITS

Test Procedure AS1289 3.1.1, 3.2.1, 3.3.1, 3.4.1

NSW DEPARTMENT OF EDUCATION - SCHOOL INFRASTRUCTURE	Laboratory:	Penrith
PO BOX 33	Job No:	20429/7
SYDNEY NSW 2000		

PROJECT: INTRUSIVE GEOTECHNICAL INVESTIGATION CONTRACT NO' DDWO 05135/23 - KINGSWOOD PUBLIC SCHOOL

				Page 1 of
Date Tested: 03/10/2023		sted By:	BG	
		ked By:	AK	
Sample Identification	Borehole 5			
Laboratory Number	20429/7-1			
Depth (m)	0.3 - 0.6			
Test Description				
Liquid Limit (W_L)	55%			
Plastic Limit (W _P)	20%			
Plastic Index (I _P)	35%			
Linear Shrinkage (LS)	12.5%			
Mould Length (mm)	127			
Sample History	Oven Dried Dry Sieved			
Material Description	(CI-CH) Silty CLAY, medium to high plasticity, grey-brown			
Form No R004 Version 13 - 07/21 - Iss	ued by ER			Report Date
NATA	Accredited for compliance with ISO/IEC 17025 - Tes	sting.	A Kench	18/10/2023
Nata Accreditation Number 2734 Corporate Site Number 2727			·	

34 Borec Road, Penrith NSW 2750 Telephone: (02) 4722 2744

Approved Signatory

Unit 4, 18-20 Whyalla Place, Prestons NSW 2170 Telephone: (02) 9607 6111

email: info@geotech.com.au www.geotech.com.au

Page 1 of 1

ATTACHMENT C

Saline Soil Management Plan

Most soils across the site are assessed to be saline. Although some soils are anticipated to be non-saline, large number of sampling and testing will be required to delineate areas with non-saline soils. Therefore, for ease of earthworks, we recommend that the soils across the site are considered to be saline. In addition, soils across the site are assessed to be dispersive and therefore susceptible to excessive erosion. Therefore, earthworks for the proposed upgrade works should be carried out in accordance with a Saline Soil Management Plan (SSMP) aimed at minimising impacts of erosion as well as soil salinity.

The objective of this SSMP is to minimise the impact of saline and dispersive soils on the proposed upgrade works and minimise the impact of the proposed workson the existing salinity and hydrology. More specifically, this SSMP aims to address the following:

- Minimise the disruption to natural surface water drainage
- Minimise the potential for waterlogging or surface water pooling
- Minimise the potential for raising the water table beneath the site
- Minimise the potential for cyclic wetting and drying areas
- Minimise the potential for excessive soil erosion
- Minimise the degradation of building products (masonry, concrete, steel) in the presence of aggressive and/or saline soils

The following principals are recommended for adoption during the earthworks to minimise impacts from saline and dispersive soils.

- Erosion and Sediment Control Plans must be developed and implemented in accordance with the Landcom Guidelines to manage the impacts from the erosive soils (References 12 and 13). All sediment and erosion controls proposed by the Erosion and Sediment Control Plan are to be installed prior to commencement of any excavation or earthworks.
- Map the current primary drainage lines and incorporate these into the surface water drainage system for the site. Do not fill in or block these drainage lines unless appropriate alternative drainage is provided.
- Develop the best use of the existing topography in order to minimise cut and fill operations.
- Where creation of individual building platform requires substantial cut and/or fill consider the use of tiered buildings and/or building with slabs suspended on piers. This will minimise the obstruction of the natural surface water flow.
- Minimise the use of retaining structures; use safely inclined slopes, with grass and plant cover as an alternative. Gabion walls are also a better alternative as they are free draining.
- Reduce groundwater recharge through appropriate land use and land management practices. This can be achieved by minimising deep infiltration and by maximising vegetation cover, planting deep-rooted trees and the use of salt tolerant plants.
- Construct a V-drain behind the crest of all slopes to divert water away from the slope face.

20429/11-AA 46-54 Second Avenue, Kingswood

- Ensure that earthworks and construction activities do not affect the natural flow of groundwater. Where groundwater is intercepted during development works/excavation, the flow should be diverted to stormwater drains or creeks by providing appropriate surface and sub-surface drainage.
- On-site water detention in un-lined basins should be prevented, as this provides a localised potential groundwater re-charge. Lined basins, relying solely on evaporation should be used as an alternative.
- The finished ground surface after completion of earthworks should be provided with adequate fall to the street or stormwater manholes to allow run-off of water and prevent water ponding, waterlogging and infiltration of rainwater.
- Construction materials and methods should be appropriate to assess Exposure and Aggressivity Classification presented in this report.